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Abstract—One-dimensional, conduction-controlled solidification of initially overheated slabs, and

cylindrical and spherical shells with insulated inner walls is considered. The heat flux from the outer face is

taken to be constant or monotonically decreasing in time. We derive sufficiently simple and tight upper and

lower bounds for the full freezing time and the extracted energy. These bounds are compared with some
known approximate solutions, the accuracy of which is thereby established.

1. INTRODUCTION

HEAT conduction accompanied by melting or freezing
is one of the most complicated topics in heat transfer.
Only a few problems of this type admit exact analytic
solutions [1]. More complicated problems are
approached by numerical or approximate analytic
methods, such as the heat balance integral method [2],
the Megerlin method [3-5] or perturbation theory
[6-8]. In many cases the accuracy of approximate
solutions is unknown. Another approach, with a built-
in criterion of maximal error, is the method of bounds
[4,9-13]. It focuses on development of reliable upper
and lower bounds for the main dynamical parameters
of the freezing or melting process. In refs. [11, 12] this
method was applied to the analysis of one-dimensional
melting in geometrically simple bodies with convective
heating at the surface. It was assumed that the heat
transfer takes place only in the solid phase.
Solidification in such bodies with isothermal
boundary conditions and an arbitrary level of initial
overheating was considered recently in ref. [13].
Application of the method of bounds to one-
dimensional, phase-change heat conduction with
prescribed flux at the surface has been limited so far to
planar geometry. Boley [9] considered the melting of a
finite slab with an insulated back wall. He formulated
a criterion which determines whether a solution of the
problem with relaxed interface heat balance
overpredicts (underpredicts) the interface location and
the temperatures in the liquid and the solid.
Unfortunately, the implementation of this criterion is
very complicated if the slab is initially subcooled.
Another approach to this problem was developed by
Solomon [4] and Solomon et al. [ 10]. By ignoring the
sensible heat in both phases they found an upper
bound for the interface position. A lower bound for
this parameter was obtained by replacing the actual

temperature by that of a semi-infinite slab without a
phase change, initially at the freezing temperature.
The boundary condition for this slab was taken to be
the same as for the actual finite slab. The bounds
obtained this way are sufficiently tight only for very
small fluxes. Glasser and Kern [11] derived bounds
for the solidification time for a slab with prescribed
constant fluxes both at the constant wall and at the
moving interface. An analytic lower bound was
derived by neglecting the sensible heat. The upper
bound was found using the convexity of the solid
temperature profile. The authors also proposed a way
to improve the lower bound. However, it required a
numerical solution of a nonlinear differential
equation.

In the present paper the method of bounds is
applied to the one-dimensional, conduction-
controlled solidification of simple bodies with a given
flux at the outer face. In addition to a slab with an
insulated back wall we consider cylindrical and
spherical shells, the inner surfaces of which are
insulated. The heat flux from the outer surfaces is
taken to be constant or monotonically decreasing in
time. An arbitrary level of initial overheating is
allowed. Using the total energy balance, the maximum
principle [4, 14] and the integral representation of the
solid temperature developed below, we formulate
improved lower bounds for the full solidification time
and the released energy. These bounds account for the
sensible heat in both the solid and the liquid. The
upper bounds are obtained using some theorems of the
theory of superharmonic functions [14]. These upper
bounds generalize those of Glasser and Kern to
problems with time-dependent fluxes, initial
overheating and cylindrical or spherical geometry. We
present several examples that illustrate the accuracy of
the bounds as compared with some approximations
used in the earlier works.
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NOMENCLATURE
a ratio of the inner to outer radii of the Greek symbols
body, R,/R, o thermal diffusivity, k/cp

c heat capacity ) phase-change front position

Q()/S heat flux from the slab A dimensionless phase-change front

Q(t)/2rR  heat flux from the position, J/R,
F= cylindrical shell of v ratio of the thermal diffusivities, o /o,

unit length 0, dimensionless liquid temperature,
Q(t)/4nR? heat flux from the o(T,—T)/L
spherical shell 0, dimensionless solid temperature,
k thermal conductivity c¢(T,—T)/L
L latent heat of fusion 0, dimensionless initial temperature,
M, function defined by equation (12) ¢(T,—T)/L
P, function defined by equation (12) f. function defined by equation (21)
o) rate of energy extraction from the P density
outer surface of the body T dimensionless time, to,/R}
q dimensionless flux, FR, /o pL 75 dimensionless time at which the
r radial coordinate freezing begins, t,0,/R?
R, outer radius of the body T* dimensionless full solidification time,
R, inner radius of the body t*o,/R}
S area of the wall of a slab 14 dimensionless radial coordinate, r/R;.
t time Subscripts
1, moment at which the freezing begins 1 liquid
t* full solidification time S solid
T temperature n geometrical index; n =0, 1 and 2
T initial temperature correspond to the planar, cylindrical
T; freezing point temperature. and spherical geometries, respectively.
2 FORMULATION OF THE PROBLEM AND 0,00, =0. @0y = a0,
. e 0,0, ) = 045).
We consider solidification in a slab, and a
cylindrical or spherical shell. The back wall of the Here n=0, 1 or 2 correspond to the planar,

body is insulated, whereas the outer surface is
subjected to a constant or monotonically decreasing
outflux of heat (see Fig. 1). Initially the material is
liquid at the temperature T)(0,r) = Ti(r), which is
above or equal to the freezing temperature T;. For
t > 0 the heat is being extracted from the outer surface
at a rate F(¢) per unit area (per unit length in the
cylindrical case). At time t =t, the outer surface
temperature becomes equal to the freezing
temperature 7;. From then on the solidification begins
and it is completed at t = t*. We assume that the
thermophysical parameters of each phase are constant
and the densities of solid and liquid are equal
p1 = p, = p. We also assume that the heat transfer is
only by one-dimensional heat conduction in the radial
direction.

Using the dimensionless parameters and variables
introduced in the Nomenclature the governing
equations, and the initial and boundary conditions
can be formulated as follows:

(@) The pre-solidification stage (0 <t < 1,)
(20,/dt) = €7 A[E"P0,/68))/0¢, a<E<t (1)

cylindrical or spherical geometry, respectively. For

T=Ts
I

: Solid
|

Liquid

0 S Ry r
{a)

Fi1G. 1. (a) Solidification in a slab with an insulated wall. (b)
Inward solidification in a cylindrical or spherical shell.
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n =0, a is zero. The function ¢(t) > 0 is presumed to
be monotonically increasing or constant. The time t,
is defined by the requirement

fi(zy, 1) = 0. &)

(b) The solidification stage (r, <t < 1*)
(06,/30) = & " O[E"26,/00)/0¢, a<E<A (4
(20,/01) = v& " A[E"(00,/08)]/0E, A<E< (5)
(dA/dT) = v(20,/08); -, —(20,/08);—,  (6)
Ot,A) = Oz, 4) =0 (7

Alry) =1, (86,/6);-, =0,

(00,/08); -1 = —q(z)/v.

Equations (4) and (5) describe the heat conduction
in the liquid and solid phases. Equation (6) relates the
liberated latent heat to the discontinuity of the heat
flux at the moving interface, whereas equations (7) and
(8) define other initial and boundary conditions.

Integrating equation (4) from £ =a to ¢ =A,
equation (5) from & = A to & = &, adding the results,
and using equation (6) one obtains

@)

d ¢ d [
— | EMO,—dE+ - | emode
dTAﬁ(s )C+drj;élé

=v"o06,/0f, A<l (9)
For & = 1, equations (8) and (9) lead to
‘A"(dA/d7)

A 1
= -4(7)—j ¢"(06,/0r) di—f £"(06,/0t) dE.  (10)
a A

Integrating equation (9) from £ = A to & = £ gives the
following formal expression for 6,:

4
vl = Pn(C,A)(dA/dTHJ P&, )06, /0t) dS

a
A
+M.,(C,A)j &m0, /or) dg’, (11)
A< <1, where ’
i-¢, n=0
P,={¢&In/), n=1
&E=¢E, n=
(12)
E—A, n=
M, = { In(¢/A), n=1
(E—-AN)/AE, n=2.

Integrating equation (10) with respect to time leads to

J (@) de’ = [(1=A"1)/(1 +n)]

1

1 A
+j €”9I(T1,f)dé—‘f ¢"\(z, &) d¢

1
—j ¢"0,(x,$)dg. (13)
A

Since A(t*) = a, equation (13) gives for t = t*:

J giz'yde = [(1—a"*Y)/(n+ 1}]

1 1
+J 5"0.(fl,é)df—f <" (r*,9)dg. (1)

The LHS of this expression represents the energy
extracted from the system during the solidification
stage 7, <t < 1*. According to equation (14) this
energy is a sum of a latent heat, the residual sensible
heat of liquid remaining from the pre-solidification
regime, and the sensible heat of the solid released
during the freezing of the body.

The heat balance for 0 < 7 < 7, 1s easily found by
integrating equation (1) with the boundary conditions
defined by equation (2):

Ty 1
f q(r)dr=j 00— 0, O] e (15)
(1] a

Combining equations (14) and (15) one obtains the
total energy extracted from the body during the
time t*:

JW g(r)dr = [(1—a"" ")/ (n+1)]

0

1
+f 00 - 04t*, §)] dE. (16)

3. BOUNDS

We now develop upper and lower bounds for the full
solidification time and the extracted energy using the
integral relations derived in the previous section. Since
the liquid temperature 6)(r,¢) is a non-negative
decreasing function of time, it satisfies the following
inequalities:

0 < Hl(ra‘f) g gl(rlsé),
b(z1,8) < 0.

T2y,

(a7

The solid temperature 6, is non-positive, 8, < 0. For
monotonically nonincreasing fluxes g(z*) > q(r) and
(06,/01) < 0. Therefore, 6, is a superharmonic
function, i.e.

¢ 8[£"(60,/08)]/0¢ < 0. (18)

According to the theory of such functions [14] 6, > 6,
where 0, is the harmonic function defined by

£ o[e"(20,/06))/08 = 0 (19)
04a) =0, (00,/08)=y = —q(e*)/v.  (20)
The explicit form of &, is given by
—q(T*)E/v, n=0, a=0
0,= { —q(x")[In(&/a)]/v, n=1, a#0
—q(@*)[(1/a) = (1/5)]/v, n=2, a#0.
2y
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Hence, the solid temperature is above the steady-state
temperature §;:

0, < 641.8) <0,
bfc*,a) =

forA<&<1,
fa) =

T < 1¥;

(22)

Using the inequalities (17) and (22) one obtains simple
upper and lower bounds for the total energy released
during the solidification process:

N ™
(1~a””)(1+n)"‘+f i“ﬁi(f:)dé<j glrydz

0

1
<<1-am)(1+n)-*+f £6,() — B)] de.
’ (23)

The lower bound for the released energy in equation
(23) neglects the sensible heat of the solid, whereas the
upper bound overestimates the solid sensible heat by
replacing the actual solid temperature by that of the
steady-state problem, defined by equations (20) and
{21). Since g(t*) > gq(1), equation (23) also leads to the
corresponding bounds for the total freezing time t*. In
the particular case n = 0, g = constant,and 6, = 0, the
upper and lower bounds in equation (23} are identical
to those of Glasser and Kern [11]. In the case n = 0
the lower bounds defined by equation (23) are also
identical to those of refs. [4, 10].

The lower bounds for the released energy in
equation (23) are obtained by substituting zero for the
solid temperature in the heat balance equation {14). A
better lower bound for the energy, which accounts for
the solid sensible heat, can be developed using an
improved upper bound for the solid temperature. Such
a bound is suggested by equation (11). Since both
86, /6r and 86,/0r are negative, the latter equation
implies the following inequality:

v H(dA/dT)P,(E, A). (24)
Its physical meaning is most easily understood in the
planar case, n =0, for which 26,/0r <0 implies
3%0,/852 < 0. Therefore, the temperature profile in the
solid is a convex function of ¢ with the maximal value
0, =0 at £ = A. Consequently, the solid temperature
is below the straight line given by

Os < (595/(‘55)6:,3(6 "A}

= (30,/0)s=aPoll.B), 12{Z A (25)

Using the moving boundary condition (6) and the fact
that both (dA/dr) and (06,/0¢) are negative, one
obtains

8, < [v™1(dA/dt)+{06,/08)s = a]Po(E, A)

< v HdA/dT)PG(E, A), (26)

which is precisely the inequality (24). We now
substitute instead of 6, its upper limit (24) into the heat
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balance integral (13):
fq(r’)dr’>(n+1>‘(1—A"“)

1

A

+J 5"[6;(1135}”9u(zs§)] dé
1

+J &")(xy, &) dé ~v1(dA/dr)
A

1
x [ $"P,(¢,A)dE. @7
A
The second term on the LHS of equation (27)
represents the decrease of the sensible heat in that
portion of the body which is still liquid at time 7. The
third term is the released liquid sensible heat of the
portion of the body which already solidified by the
time 7. We can further strengthen the inequality (27)
by neglecting the decrease of the temperature in the
liquid portion of the body (a2 < & < A):

T 1
J q(v')dv’ > ('l+1)1(1~A"”)+j $"th(ry, &) dg
T A

1

1
—v7H{dA/dr) j P AL (28)
a

This expression involves only one unknown function,
the absolute value of the interface velocity (—dA/d).
The simple bounds for this quantity follow from
equation (10):

0 < —dA/dr < g(t)A™" < q(z*)A™". 29)

The lower bound in equation (29), when substituted
into (28), would lead to the same result as equation
(23), whereas the upper bound would destroy the
inequality (28). To overcome this difficulty we
integrate equation (28) with respect to time from
7 =1, to 7 = t*. This yields

f dz J g(z")dr’
31 Tt
1

> -(n+1)"j (1—-A""Y)dA/dz) " dA

a

J {dA/dr)” ldAf Bz, Eydé

fdAf (M) e (30)

This inequality involves the inverse of the interface
velocity, and its structure is preserved when the upper
bound of equation (29} is substituted into (30). This
yields:

J drj g(t'ydr > (1
31 A

1 1
+[g*)]™! j A"dA j $"i(zy, 8 dE
a A

—a" ) 2q(*)n+ 1]

“‘JldAJ“P,,(g’,A)é"dé. €3]
a A
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Knowing the explicit expressions for g(t} and 6i(zy, £},
one can use the inequality (31) to derive lower bounds
for the total freezing time and for the extracted energy.
These bounds explicitly involve the contribution of the
sensible heat of the solid, which is represented by the
last term in equation (31). In the following section we
illustrate application of the bounds (23} and (31) to
several particular problems.

4, EXAMPLES

4.1. Slab with g = const, 8{£) = const
The upper and lower bounds corresponding to
equation (23) are given by

[(1+6)/q] < =* < (1+6)[1+q/2v(1+6)]/q. (32)

These bounds are close to each other as long as the flux
g is small, i.e. ¢ € 2(1+8)v. The overheating tends to
bring these limits closer together. In order to improve
the lower bound we use equation (31). In the present
case this gives

1 12
* > 1, +q“‘[1+(q/3v}+2j €9|(11,5)d5:' - (33)
0

Using the solution of the corresponding sensible heat
problem for t € 1,

6(c,8) = oi-qr-q{[(352 18] - 2277

X i (= D™~ ?[exp(—n*n’1)] ces(nnf)} (34)
n=1

one obtains

w0

1
f E0(11,8)d¢ = (¢/3)—qn™* ¥ n”*exp(—n’n’1)
o

n=1
x {1=27"2n"1~(=1)"]}. (35)

The time, 7, is defined by the transcendental equation

1, = 0,/9)—(1/3)+2r"2 i n~? exp(—n?n?t,). (36)

n=1
Notice that
6/9)—(1/3) <1, <6/q, 0<1y. (37)

When 36, > 4, an analytic lower bound for 7* can be
derived combining equations (33) and (37):

™ > (0/9)—(3)+q ' [1+(q/30]"2.  (38)

In Table 1 we present the upper t* * and the lower t*~
bounds for the full solidification time for the case
g=1,v=1,0< 6, < 4. This case cannot be treated
by the perturbation theory because of the values of the
parameters g and 6, (the proper solidification time
* —1; ~ 1, i.e. of the order of the heat diffusion time
in each of the phases involved). The average of our
bounds {t*) predicts t* and the proper solidification
time % —1,; with an error not exceeding 139 for the
range of parameters considered. As can be seen from
Table 1, raising the initial temperature 6, also leads to
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Table 1. Upper and lower bounds for the solidification time
of initially overheated slab (g = 1, v = 1)

8, 0.00 033 050 1.00 2.00 3.00
7, 000 009 020 067 167 2.67
(¢ =0,1=1,) 000 033 044 0.50 0.50 0.50
** 1.50 183 200 250 3.50 4.50
T 1.16 146 160 208 308 4.08
(% 133 165 1.80 229 329 429
%y -1y 133 1.56 160 162 162 162
VAP 3 12 11 9 6 5
GO

an increase of the pre-solidification time t,. However,
the proper solidification time *-—7, remains
practically unchanged for 6, 2 1. This effect can be
understood by the fact that for 6, > 1 the transients of
the liquid temperature are negligibly small at 7 = 1,.
The liquid temperature at 7., 8,(t,, £) is practically the
same for any initial overheating which satisfies the
condition &, > 1. The maximal value of 6(t,, &) is at
the insulated wall (¢ = 0). As can be seen from Table 1,
for 6,2 1, 0(r = 14, & = 0) = g/2 = 0.5 [see equation
(34)]. Consequently, the liquid resistance to the
interface motion is the same for any 6,> 1, g = 1.
According to the results of Table 1 the initial
overheating can raise the proper solidification time
™ —1, by 22% as compared with that without
overheating for the same heat outflux g = 1.

The bounds become especially simple when 8, = 0
(r, =0):

[1+@/3)]'%/g <t < (Yg)+(1/2v).  (39)

The case 8, = 0, g = const, was studied previously in
refs. [2,4,11]. Using the bounds for the interface

location given in ref. [4] one obtains the
corresponding bounds for t*
(1/g) < t* < (1/g)+ Q/rv)+ 2(mv) =172
x [(1/mv) +(1/g)]*72. (40)

The expressions for 7* obtained by the Megerlin
method {4] and by the heat balance integral
approximation [2] are respectively given by

™ = (12q)+{[1+ @] - 1}/12¢* (41
™ = {S+(g/v)+[1+@gM]'?}/6q.  (42)

In Fig. 2 we present the bounds (39), (40) and
approximations {41), {42) for the case v=1,
0 < g < 5. As follows from Fig. 2 the bounds (39) are
substantially more precise than those given by
equation (40). The maximal error (¢** —t*~/1*7) at
q = 0.5is now 15% instead of 98 9/, and 1129 instead
of 7259, at g = 5.0. The average {t*) of the bounds
(39) is predicted with an error {{r*>—1t*"}/{t*)
varying from 7% at g = 0.5 to 439 at ¢ = 5.0. This
average is very close to the approximations (41) and
(42). This result validates the above approximate
solutions for fluxes with ¢ 2 1, where the perturbation
theory cannot be applied.
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2.5

20+

101

DIMENSIONLESS SOLIDIFICATION TIME 7+

05 [-

0 1
0 1 2 3 4 5

DIMENSIONLESS HEAT FLUX g

F1G. 2. Slab solidification time as a function of the heat flux

{(v=1, 6;=0, g = const). Curves la and lb—the bounds

corresponding to equation (40); curves 2a and 2b—the

improved bounds, equation (39); curve 3—the heat balance

method, equation (42); curve 4—the Megerlin method,
equation (41).

4.2. Slab with g = q47, 6, =0
For this case equation (25) leads to the following
bounds:

(2/g0)% < T < [2(1+q/8v*)/qe] "2 +(20) .

An improved lower bound, which accounts for the
sensible heat in the solid phase, is obtained using
equation (31):

(43)

* > (t*/gov) + (3/43).

The bounds corresponding to the particular case v = 1
are illustrated in Fig. 3. The average of the lower
bound (44) and the upper bound in equation (43)
predicts the full solidification time with an error
varying from 139, to 559 in the range 0.5 < g, < 8.0.

(44)

4.3. Cylindrical shell 0; = 0, g = const
The bounds corresponding to equation (25) are
given by

[(1—a?)/2q]) < t* < [(1-a?)/2q]

—[lna+(1-a%)/2]/2v. (45)

These bounds are close to each other aslong as (1 —a?)
> g|[lIna+(1—a)/2]|. The accuracy of the upper
bound decreases when a tends to zero. An improved
lower bound corresponding to equation (33) is found

25 T T T T T T

20} J

T+

IME

15F

DIMENSIONLESS  SOLIDIF ICATION
o
T

05 %

1 . 1 1

0 2 & 6 8

HEAT FLUX PARAMETER qo

F1G. 3. Slab solidification time as a function of the flux
parameter g, (¢ = got, 8, =0, v =1). Curve 1—the upper
bound in equation (41); curve 2—the improved lower bound,
equation (44); curve 3—the lower bound in equation (43).

to be
* > [(1—a2)/2q]{1+q[2a21na+(1—a2)/2]

x [(1—a?)?v] 1Y%, (46)

The lower bound (46) is applicable even when a = 0.
In Fig. 4 these bounds are shown for the case v =1,
a = 0.4. The maximal error of the improved bounds
varies from 4% at ¢ = 0.1 to 1009, at ¢ = 3.0. The
Megerlin method applied to the present problem in
ref. [5] leads to the following expression:

™ = [(1-a?)/4q] +{1—a*[1-4q(In a)/v]}(4q) "}
+(r/32qv)**[exp(v/29)]
x {erf[(v/2q) —21n a]*/? —erf(v/2q)"/?}.

(47)
In Fig. 4 we present the values of 7* corresponding to
equation (4) for v = 1, a = 0.4. These values of t* are
almost the same as the improved lower bound given by
equation (46).

5. CONCLUDING REMARKS

In this paper we develop lower and upper bounds
for the solidification time and the energy extracted
during freezing of slabs, and cylindrical and spherical
shells with imposed heat flux at their outer surfaces.
The inner surfaces of these bodies were assumed to be
insulated, and the outfluxes of heat were taken to be
constant or monotonically decreasing in time.
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20

05

DIMENSIONLESS SOLIDIFICATION TIME T+

DIMENSIONLESS HEAT FLUX g

F1G. 4. Solidification time of the cylindrical shell as a

function of the flux (g = const, 6; = 0,v = 1,a = 0.4). Curve

l—the upper bound in equation (45); curve 2—the

approximate solution, equation (47); curve 3—the improved

lower bound, equation (46); curve 4—the lower bound in
equation (45).

The lower and upper bounds derived in the present
work account for the initial overheating. By including
the contributions of the sensible heat of the liquid and
the solid, the lower bounds are substantially
improved, as compared with the results of earlier
studies. Our upper bounds account for the finite size of
the systems considered and, therefore, are more
accurate than those found in refs. [4, 10]. Due to these
features the new bounds are sufficiently tight not only
in the case of slow solidification, for which ¢ < 1, but
also for the q =~ 1 case. The accuracy of the bounds
increases as ¢ — 0.

For a slab with a constant flux and no initial
overheating the maximal error of the new bounding
solutions for t* is about 7 times lower than of those
given in refs. [4, 10]. The new bounds also validate the
approximate solutions obtained for the same problem
by the heat balance integral method [2] and by the
Megerlin method [4] for the range of fluxes g 2 1,
where the perturbation theory is invalid. We also
examined the accuracy of the bounds for the case of a
substantially overheated slab. The overheating was
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shown to increase the time of the solidification stage
by about 229 for g =1 and 6, > 1. For inward
solidification in a cylindrical shell the limits for 7*
derived in the present paper validate the approximate
solution of ref. [5], which is slightly above our lower
bound for t*. The method presented in this paper can
be extended to the outward solidification in
geometrically simple bodies, as well as to the melting
of such bodies by a constant or monotonically
increasing heat flux imposed at their surfaces.
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SOLIDIFICATION DE CORPS FINIS AVEC UN FLUX THERMIQUE PRESCRIT:
LIMITES POUR LE TEMPS DE GEL ET POUR L’ENERGIE EXTRAITE

Résumé—On considére la solidification monodimensionnelle, contrdlée par la conduction, de plaques, de

coques cylindriques ou sphériques initialement surchauffées. Le flux de chaleur enlevé sur la face externe

est choisi constant ou monotoniquement décroissant dans le temps. On obtient des limites suffisamment

simples, supérieures et inférieures pour le temps total de solidification et pour I'énergie extraite. Ces limites
sont comparées avec quelques solutions approchées connues et dont la précision est connue.
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ERSTARRUNG IN ENDLICHEN KORPERN MIT AUFGEPRAGTER
WARMESTROMDICHTE : GEFRIERZEIT UND ABGEFUHRTE ENERGIE

Zusammenfassung—Es wurde die Erstarrung (im wesentlichen infolge eindimensionaler Wirmeleitung)

von anfinglich iberhitzten Platten sowie zylinder- und kugelférmigen Schalen mit wirmegedimmten

Innenwinden betrachtet. Die Wirmestromdichte an der duBeren Oberfliche wurde als zeitlich konstant

oder monoton abnehmend angenommen. Es wurden hinreichend einfache und dicht beieinanderliegende

obere und untere Grenzen fiir die vollstandige Gefrierzeit und die entzogene Energie hergeleitet. Diese

Grenzen wurden mit einigen bekannten Niherungslosungen verglichen, deren Genauigkeit dabei bestitigt
werden konnte.

MPOLIECC 3ATBEPAEBAHHA B TEJIAX KOHEUHBIX PAMEPOB ITPU 3AJAHHOM
TEILJIOBOM MOTOKE: ONPENENEHUE IMPEJEJBHBIX 3HAYEHHA BPEMEHU
SATBEPJEBAHUA H KOJIMUYECTBA OTBEAEHHOI'O TEIUIA

AssoTamus—PaccMaTpuBaeTcs ONHOMepHas 3aJava 3aTBEPAEBAHUS 3a CYET OTBOJA TEM/A TEILIONpO-
BOJHOCTBIO OT TIEPErPeTHIX B HAYAILHLIE MOMEHT BpeMEHH ILUIACTHH, 4 TAKXKe IMIMHIPHYECKHX U ce-
pHyeckHX o6ONOYEK C TEIUIOM3ONMPOBAHHLIME BHYTPEHHHMH cTeHkamu. Ilpeanonaraercs, uToO
TEMI0BOM NOTOK C HAPYXHOH CTOPOHK MOBEPXHOCTH HE M3MEHAETCH WM MOHOTOHHO YMEHBIHACTCH BO
Bpemern. [TonyveHB! JOBONBHO NPOCTHIC ¥ KOMNAKTHHIC BEPXHHE W HIKHHE NPEAENTHl U8 HOJHOTO
BDCMEHH 3aTBEPACBAHHA M KOJMYCCTBA OTBeleHHOro Temia. IIpoBeleHO CpaBHEHHE C HEKOTODHLIMY
H3BECTHLIME NPHGIMKCHHBIMY PELICHASMH B TEM CAMBIM YCTAHOBJEHA HX TOYHOCTD.



