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Abstract-One-dimensional, conduction-controlled solidification of initially overheated slabs, and 
cylindrical and spherical shells with insulated inner walls is considered. The heat flux from the outer face is 
taken to be constant or monotonically decreasing in time. We derive sufficiently simple and tight upper and 
lower bounds for the full freezing time and the extracted energy. These bounds are compared with some 

known approximate solutions, the accuracy of which is thereby established. 

1. INTRODUCTION 

HEAT conduction accompanied by melting or freezing 
is one of the most complicated topics in heat transfer. 
Only a few problems of this type admit exact analytic 
solutions [l]. More complicated problems are 
approached by numerical or approximate analytic 
methods, such as the heat balance integral method [2], 
the Megerlin method [3-S] or perturbation theory 
[6-81. In many cases the accuracy of approximate 
solutions is unknown. Another approach, with a built- 
in criterion of maximal error, is the method of bounds 
[4,9-131. It focuses on development of reliable upper 
and lower bounds for the main dynamical parameters 
of the freezing or melting process. In refs. [ 11,121 this 
method was applied to the analysis of one-dimensional 
melting in geometrically simple bodies with convective 
heating at the surface. It was assumed that the heat 

transfer takes place only in the solid phase. 
Solidification in such bodies with isothermal 
boundary conditions and an arbitrary level of initial 
overheating was considered recently in ref. [13]. 

Application of the method of bounds to one- 
dimensional, phase-change heat conduction with 
prescribed flux at the surface has been limited so far to 
planar geometry. Boley [9] considered the melting of a 
finite slab with an insulated back wall. He formulated 
a criterion which determines whether a solution of the 

problem with relaxed interface heat balance 
overpredicts (underpredicts) the interface location and 
the temperatures in the liquid and the solid. 
Unfortunately, the implementation of this criterion is 
very complicated if the slab is initially subcooled. 
Another approach to this problem was developed by 
Solomon [4] and Solomon et al. [lo]. By ignoring the 
sensible heat in both phases they found an upper 
bound for the interface position. A lower bound for 
this parameter was obtained by replacing the actual 

temperature by that of a semi-infinite slab without a 

phase change, initially at the freezing temperature. 
The boundary condition for this slab was taken to be 
the same as for the actual finite slab. The bounds 
obtained this way are sufficiently tight only for very 
small fluxes. Glasser and Kern [ll] derived bounds 

for the solidification time for a slab with prescribed 
constant fluxes both at the constant wall and at the 

moving interface. An analytic lower bound was 
derived by neglecting the sensible heat. The upper 

bound was found using the convexity of the solid 
temperature profile. The authors also proposed a way 
to improve the lower bound. However, it required a 
numerical solution of a nonlinear differential 
equation. 

In the present paper the method of bounds is 
applied to the one-dimensional, conduction- 
controlled solidification of simple bodies with a given 
flux at the outer face. In addition to a slab with an 
insulated back wall we consider cylindrical and 
spherical shells, the inner surfaces of which are 
insulated. The heat flux from the outer surfaces is 
taken to be constant or monotonically decreasing in 
time. An arbitrary level of initial overheating is 
allowed. Using the total energy balance, the maximum 
principle [4,14] and the integral representation of the 
solid temperature developed below, we formulate 
improved lower bounds for the full solidification time 
and the released energy. These bounds account for the 
sensible heat in both the solid and the liquid. The 
upper bounds are obtained using some theorems of the 
theory of superharmonic functions [ 141. These upper 
bounds generalize those of Glasser and Kern to 
problems with time-dependent fluxes, initial 
overheating and cylindrical or spherical geometry. We 
present several examples that illustrate the accuracy of 
the bounds as compared with some approximations 
used in the earlier works. 
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NOMENCLATURE 

a ratio of the inner to outer radii of the Greek symbols 

body, RJR, a thermal diffudvity, k/cp 

C heat capacity 6 phase-change front position 

Q@)P heat flux from the slab A dimensionless phase-change front 
Q(t)/27rR heat flux from the position, 6/R, 

F= cylindrical shell of 
1;, 

ratio of the thermal diffusivities, a,/a, 

unit length dimensionless liquid temperature, 
Q(t)/47rR2 heat flux from the c,K- V/L 

spherical shell 0, dimensionless solid temperature, 
k thermal conductivity cS T, - T,):L 
L latent heat of fusion 01 dimensionless initial temperature, 

M” function defined by equation (12) c,(7;- T,)IL 

i?l) 

function defined by equation (12) e, function defined by equation (2 1) 
rate of energy extraction from the P density 
outer surface of the body 5 dimensionless time, ta,/Rf 

4 dimensionless flux, FR,/cq pL Tl dimensionless time at which the 
r radial coordinate freezing begins, t,a,/Rf 

R, outer radius of the body r* dimensionless full solidification time, 

R, inner radius of the body t*a,jRf 

S area of the wall of a slab 5 dimensionless radial coordinate, r/R,. 

t time Subscripts 

t1 moment at which the freezing begins 1 liquid 
t’ full solidification time S solid 
T temperature n geometrical index; n = 0, 1 and 2 

7; initial temperature correspond to the planar, cylindrical 

T, freezing point temperature. and spherical geometries, respectively. 

2. FORMULATION OF THE PROBLEM AND 
INTEGRAL RELATIONS 

(?Q,,ky)<=, = 0, (c?o,/ag),,l = -q(7), 
(2) 

We consider solidification in a slab, and a __ _ _ 
4(0,5) = f-M. 

\ I 

. . 

cylindrical or spherical shell. The back wall of the 
body is insulated, whereas the outer surface is 
subjected to a constant or monotonically decreasing 
outflux of heat (see Fig. 1). Initially the material is 
liquid at the temperature 7;(0,r) = 7;(r), which is 

above or equal to the freezing temperature T,. For 
t > 0 the heat is being extracted from the outer surface 
at a rate F(t) per unit area (per unit length in the 
cylindrical case). At time t = t, the outer surface 

temperature becomes equal to the freezing 
temperature T,. From then on the solidification begins 

and it is completed at t = t*. We assume that the 
thermophysical parameters of each phase are constant 
and the densities of solid and liquid are equal 
p, = ps = p. We also assume that the heat transfer is 
only by one-dimensional heat conduction in the radial 
direction. 

Using the dimensionless parameters and variables 
introduced in the Nomenclature the governing 
equations, and the initial and boundary conditions 
can be formulated as follows: 

(a) The pre-solidification stage (0 < 7 < TV) 

(N,/?z) = S-.“i[r”(~o,/ag)]/ag, a Q 5 < 1 (I) 

Here n = U, I or L correspond to the planar, 
cylindrical or spherical geometry, respectively. For 

T=Tt 

L 

(b) 

FIG. 1. (a) Solidification in a slab with an insulated wall. (b) 
Inward solidification in a cylindrical or spherical shell. 
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n = 0, a is zero. The function q(z) > 0 is presumed to 
be monotonically increasing or constant. The time rr 
is defined by the requirement 

B,(r,, 1) = 0. (3) 

(b) The solidification stage (rr < r < T*) 

(dt),/dr) = t-” +Y’(~0,/~~)]/~~, a < 5 < A (4) 

(?0,/(!7) = v5~“a[5”(ae,/;i5)]/ag, A ,< 5 d 1 (5) 

(d&k) = ~1(ae,/ag),=,-(dH,/d5)~=~ (6) 

U,(r, A) = H,(z, A) = 0 

ACTI) = 1, (%,/X),,, = 0, 

(aQ,/ag), = 1 = -q(z)/v. 

(7) 

(8) 

Equations (4) and (5) describe the heat conduction 
in the liquid and solid phases. Equation (6) relates the 
liberated latent heat to the discontinuity of the heat 

flux at the moving interface, whereas equations (7) and 
(8) define other initial and boundary conditions. 

Integrating equation (4) from 5 = CI to 4 = A, 
equation (5) from 5 = A to 5 = 5, adding the results, 
and using equation (6) one obtains 

=$‘?&/a<, A<<<l. (9) 

For 5 = 1, equations (8) and (9) lead to 

A”(dA/dr) 

= -q(z)- 
j 

A ~“(M,/d~) d< - 
j 

1 [“(iXl,/&) d<. (10) 
(1 A 

Integrating equation (9) from 5 = A to 5 = 5 gives the 
following formal expression for 0,: 

~0, = Pn(5, A)(dA/dr) + 
j 

’ I’“((‘, S)(aH,/dr) d<’ 
A 

s 

A 

+M,,(t, A) 5’“(24l~r) dt’, (11) 
0 

A<<<l,where 

5-Y, n=O 

P, = 5’ W/C’), 

( 

n=l 

5’(5-015, n = 2 

5-A, n=O 
(12) 

M, = 

r 

MUA), n=l 

(c-A)/A<, n = 2. 

Integrating equation (10) with respect to time leads to 

s r 

q(C)dr’ = [(l -An”)/(l +n)] 
71 

+ s ’ 5’W,,5)d5- 
(1 

- s ’ 5”W,Ud5. 
A 

(13) 

Since A(t*) = a, equation (13) gives for 7 = 7*: 

s 

r* 

q(z’)dt’ = [(l-u”“)/(n+ l)] 
71 

+ 
j 

’ 5”W,,5)d5- 
j 

1 5”W*,5)d5. (14) 
P (1 

The LHS of this expression represents the energy 
extracted from the system during the solidification 
stage tr < T < T*. According to equation (14) this 
energy is a sum of a latent heat, the residual sensible 
heat of liquid remaining from the pre-solidification 
regime, and the sensible heat of the solid released 
during the freezing of the body. 

The heat balance for 0 < 7 < tl is easily found by 
integrating equation (1) with the boundary conditions 
defined by equation (2): 

Sd’q(r)dr=j 5”[e,(5)-e,(7,,5)ld5. (15) 

Combining equations (14) and (15) one obtains the 

total energy extracted from the body during the 
time z*: 

j 

T* 
q(t)dt = [(I -a”“)/(n+ l)] 

0 

+ 

s 

’ 5”[e,(5)-e,(r*,5)1d5. (16) 
(1 

3. BOUNDS 

We now develop upper and lower bounds for the full 
solidification time and the extracted energy using the 
integral relations derived in the previous section. Since 
the liquid temperature @,(r, 5) is a non-negative 
decreasing function of time, it satisfies the following 
inequalities: 

0 d Q,(r,<) d q7,,0, 7 2 7,; 

o,(T,,<) G Oi. 
(17) 

The solid temperature & is non-positive, 0, < 0. For 
monotonically nonincreasing fluxes q(r*) > q(7) and 
(%,/a~) < 0. Therefore, 0, is a superharmonic 
function, i.e. 

5-n ar5n(aQ,ia0]ia< < 0. (18) 

According to the theory of such functions [ 141 es > e,, 
where & is the harmonic function defined by 

5-1’ qy(aesjag)pag = 0 (19) 
_ 
H,(U) = 0, cae,iay),, 1 = -q(7*yv. (20) 

The explicit form of 8, is given by 

-q(r*)Uv, n=O, a=0 

e, = -q(T*)b(&)l/v, n=l, a#0 

-q(7*)[(l/a)-_(1/5)l/v, n=2, a#O. 

(21) 
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Hence, the solid temperature is above the steady-state 
temperature 8,: 

&<0,(7,l3i:O, forA<t<l, T-CT*; 

@&*,a) = e&j = 0. 
(22) 

Using the inequalities (17) and (22) one obtains simple 
upper and lower bounds for the total energy released 
during the solidification process: 

(l-a”+’ )(l+n)-’ f’ 
s 

’ r”ffi(T)dg < 
iI s 

I* 
4(7)d7 

0 

< (l-~“+‘)(l+n)-‘+ 
j 

’ yn[ei(~)-~(r)]d5. 
L1 

(23) 

The lower bound for the released energy in equation 
(23) neglects the sensible heat of the solid, whereas the 
upper bound overestimates the solid sensible heat by 
replacing the actual solid temperature by that of the 
steady-state problem, defined by equations (20) and 
(2 1). Since q(z*) > q(r), equation (23) also leads to the 
corresponding bounds for the total freezing timer*. In 
the particular case n = 0, q = constant, and tf, = 0, the 
upper and lower bounds in equation (23) are identical 
to those of Glasser and Kern [ 111. In the case II = 0 
the lower bounds defined by equation (23) are also 
identical to those of refs. [4, lo]. 

The lower bounds for the released energy in 
equation (23) are obtained by substituting zero for the 
solid temperature in the heat balance equation (14). A 
better lower bound for the energy, which accounts for 
the solid sensible heat, can be developed using an 
improved upper bound for the solid temperature. Such 
a bound is suggested by equation (11). Since both 
%_I& and iX?,/& are negative, the latter equation 
implies the following inequality: 

0, < v-‘(dA/dz)P,({,A). (24) 

Its physical meaning is most easily understood in the 
planar case, n = 0, for which a@,/& < 0 implies 
a20,ja<2 < 0. Therefore, the temperature profile in the 
solid is a convex function of 5 with the maximal value 
8, = 0 at [ = A. Consequently, the solid temperature 
is below the straight line given by 

Using the moving boundary condition (6) and the fact 
that both (dA/dr) and (a@,/@) are negative, one 
obtains 

8, < [v- 1(dA/dz)+(aB,/i35)r=dlPO(r,A) 

< ~-‘(dA/d~)P~(~,A), (26) 

which is precisely the inequality (24). We now 
substitute instead of OS its upper limit (24) into the heat 

balance integral (13): 

s T 

q(t’)dz’> (n+l))‘(l-A”+‘) 
11 

+ 
s 

’ [“@,(r,,t)dc--v-‘(dA/dr) 
A 

x 

s 

’ S”P,(S>4dT. (27) 
A 

The second term on the LHS of equation (27) 
represents the decrease of the sensible heat in that 
portion of the body which is still liquid at time 7. The 
third term is the released liquid sensible heat of the 
portion of the body which already solidified by the 
time t. We can further strengthen the inequality (27) 
by neglecting the decrease of the temperature in the 
liquid portion of the body (a < [ < A): 

s 

i 

s 

1 
q(z’)dr’> (n+l))‘(l-A”+‘)+ 5"4(71> 5) dt 

71 A 

-v-‘(dA/‘dr) 
i 

1 

{“P,(c. A) dt. (28) 
A 

This expression involves only one unknown function, 
the absolute value of the interface velocity (-dA/dz). 
The simple bounds for this quantity follow from 
equation (10): 

0 < -dA/‘dt < q(z)A-” < q(t*)A-“. (29) 

The lower bound in equation (29), when substituted 
into (28), would lead to the same result as equation 
(23), whereas the upper bound would destroy the 
inequality (28). To overcome this difficulty we 
integrate equation (28) with respect to time from 
T = 7s1 to 7 = 7*. This yields 

r* r 

s I 
dr q(f) dr’ 

r1 I1 

s 

1 

> -(n+l))’ (l-A”+i)(dA/dz)-‘dA 
a 

- 
s 

’ (dA/dr)-‘dA ’ <V,(ri,<)d{ 
Y s A 

1 

+v-’ dA 
s s 

1 

P,(5, A)<” d5. (30) 
(I A 

This inequality involves the inverse of the interface 
velocity, and its structure is preserved when the upper 
bound of equation (29) is substituted into (30). This 
yields : 

i’ r 

s s 
dr q(r’)dr’> (l-n ” + ‘)2[2q(T*)(n + l)‘] - l 

fl (1 

1 

+ Eq@*,l- l 

s s 

AndA 1 ~n~~(~~,~)d~ 
a A 

t 

s s 

1 

+v-’ dA P&5, A)<” dr. (31) 
II A 
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Knowing the explicit expressions for q(r) and ff,(z,, t), 

one can use the inequality (31) to derive lower bounds 
for the total freezing time and for the extracted energy. 
These bounds explicitly involve the contribution of the 
sensible heat of the solid, which is represented by the 
last term in equation (3 1). In the following section we 
illustrate application of the bounds (23) and (31) to 
several particular problems. 

4. EXAMPLES 

4.1. Slab with q = const, 0,(r) = const 
The upper and lower bounds corresponding to 

equation (23) are given by 

[(1+0,)/q] <r* < (l+ei)[l+q/2v(l+8,)]/q. (32) 

These bounds are close to each other as long as the flux 
q is small, i.e. q < 2( I + 0,)~. The overheating tends to 
bring these limits closer together. In order to improve 
the lower bound we use equation (31). In the present 
case this gives 

:t* >~~+~-‘[11(4:3v)+2~~‘(8,(~~,~)di]l”, (33) 

Using the solution of the corresponding sensible heat 
problem for 7 < z1 

e,(r,<) = Bi-qt-q [(3rZ-1)/6]-2n-2 

x f (- l)“nS2[exp( -n2n25)] cos(nn<) (34) 
n=, 

one obtains 

s 
’ @,(r,,5)dC = (q/3)-qn-2 i n-2exp(-n2nzz) 
0 "=I 

x{1-2n-%-~[1--(-11)A]). (35) 

The time, rt , is defined by the transcendental equation 

7i = (0i/q)-(1/3)+2x-2 f n-* exp( -rr2n2r1). (36) 
“=l 

Notice that 

t@i/4) --(l/3) < T1 G 4/q, 0 < 7i. (37) 

When 30, > q, an analytic lower bound for 7* can be 
derived combining equations (33) and (37): 

7* > (ei/q)-(~/3)+q-~[~+(q/3v)]~‘2. (38) 

In Table 1 we present the upper r*+ and the lower r.*- 
bounds for the full solidification time for the case 
q = 1, v = 1, 0 6 ei Q 4. This case cannot be treated 
by the perturbation theory because of the values of the 
parameters q and 0, (the proper solidification time 
7*-71 * 1, i.e. of the order of the heat diffusion time 
in each of the phases involved). The average of our 
bounds (z*) predicts 7* and the proper solidification 
time 7* -7, with an error not exceeding 13 % for the 
range of parameters considered. As can be seen from 
Table 1, raising the initial temperature Bi also leads to 

Tabie 1. Upper and lower bounds for the solidification time 
of initially overheated slab (q = 1, v = 1) 

4 0.00 0.33 0.50 1.00 2.00 3.00 
;;g=O,r=r,) 0.00 0.00 0.33 0.09 0.20 0.44 0.50 0.67 0.50 1.67 0.50 2.67 

T*+ 1.50 1.83 2.00 2.50 3.50 4.50 
z*- 1.16 1.46 1.60 2.08 3.08 4.08 

:::;-T, 1.33 1.33 1.65 1.56 1.60 1.80 2.29 1.62 3.29 1.62 4.29 1.62 

(T*)-T*- 
CT*) “/ o 

13 12 11 9 6 5 

an increase of the pre-solidification time ‘si. However, 
the proper solidification time 7* -zl remains 
practically unchanged for Bi & 1. This effect can be 
understood by the fact that for Bi Z 1 the transients of 
the liquid temperature are negligibly small at 7 = TV. 
The liquid temperature at ri, @,(t, , c) is practically the 
same for any initial overheating which satisfies the 
condition Bi 2 1. The maximal value of tI,(rt, {) is at 
the insulated wall (5 = 0). As can be seen from Table 1, 
for e, 2 1, e,(z = r,,t = 0) = q/2 = 0.5 [see equation 
(34)]. Consequently, the liquid resistance to the 
interface motion is the same for any Si Z 1, q = 1. 
According to the results of Table 1 the initial 
overheating can raise the proper solidification time 
T*-T~ by 22% as compared with that without 
overheating for the same heat outflux q = 1. 

The bounds become especially simple when 0, = 0 
(Ti = 0): 

[l +(q/3v)]“2/q < 7* < (f/q)+(1/2v). (39) 

The case Bi = 0, q = const, was studied previously in 
refs. [2,4, 111. Using the bounds for the interface 
location given in ref. [4] one obtains the 
corresponding bounds for r* 

(i/q) < 7* < (l/q)+(2/7rv)+2(mJ)-“2 

x [(w)+(l/q)]“2. (40) 

The expressions for 7* obtained by the Megerlin 
method [4] and by the heat balance integral 
approximation [2] are respectively given by 

7* = (1/2q)+{[1+(4q/v)]“2-Ij/l2q2 (41) 

T* = {5+(q/v)+[1+(4q/v)]1’2}/6q. (42) 

In Fig. 2 we present the bounds (39), (40) and 
approximations (41), (42) for the case v = 1, 
0 < q < 5. As follows from Fig. 2 the bounds (39) are 
substantially more precise than those given by 
equation (40). The maximal error (r* + - 7* -/7*-) at 
q = 0.5 is now 15 % instead of 98 %, and 112 % instead 
of 725 y0 at q = 5.0. The average (r*) of the bounds 
(39) is predicted with an error ((7*)-7*-j/(7*) 

varying from 7 % at q = 0.5 to 43 % at q = 5.0. This 
average is very close to the approximations (41) and 
(42). This result validates the above approximate 
solutions for fluxes with q 2 1, where the perturbation 
theory cannot be applied. 
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1 2 3 L 5 

DIMENSIONLESS HEAT FLUX q 

FIG. 2. Slab solidification time as a function of the heat flux 
(v = 1, 0, = 0, 4 = const). Curves la and lb-the bounds 
corresponding to equation (40); curves 2a and 2&the 
improved bounds, equation (39); curve 3-the heat balance 
method, equation (42); curve +-the Megerlin method, 

equation (41). 

4.2. Slub with q = q,,r, 0, = 0 
For this case equation (25) leads to the following 

bounds: 

(2/q,)“Z < T* < [2( 1 + q0/8v2)/q,]“2 + (2v) - 1 (43) 

An improved lower bound, which accounts for the 
sensible heat in the solid phase, is obtained using 

equation (3 1): 

T*4 > (z*/q,v) + (3/q:). (44) 

The bounds corresponding to the particular case I’ = 1 
are illustrated in Fig. 3. The average of the lower 
bound (44) and the upper bound in equation (43) 
predicts the full solidification time with an error 
varying from 13 ‘A to 55% in the range 0.5 < q0 d 8.0. 

4.3. Cylindrical shell 0, = 0, q = const 
The bounds corresponding to equation (25) are 

given by 

[(l-u2)/2q] < T* < [(I -u2V2q] 

-[In a + (1 -a2)/2]/2v. (45) 

These bounds are close to each other as long as (1 --a’) 
+ ql[ln a + (1 -a)/2]/. The accuracy of the upper 

bound decreases when a tends to zero. An improved 
lower bound corresponding to equation (33) is found 

-I 
0 2 1. 6 8 

IiEb,T FibX PARAMETER q. 

FIG. 3. Slab solidification time as a function of the flux 
parameter q,, (q = qor, Bi = 0, 11 = 1). Curve l-the upper 
bound in equation (4l);curve 2-the improved lower bound, 
equation (44); curve 3-the lower bound in equation (43). 

to be 

t* > [(l-a2)/2q]{ 1+q[2a21na+(1-u2)/2] 

x [(I-U’)‘\~]~‘)“‘. (46) 

The lower bound (46) is applicable even when a = 0. 
In Fig. 4 these bounds are shown for the case v = 1, 
a = 0.4. The maxima1 error of the improved bounds 
varies from 4% at q = 0.1 to 100 % at q = 3.0. The 
Megerlin method applied to the present problem in 
ref. [5] leads to the following expression: 

5* = [(l-a2)/4q]+{1-a2[1-4q(lnu)/v]}(4q)-’ 

+ (n/32qvP2[exp(v/2q)l 

x {erf[(v/2q) -2 In u]“’ -erf(v/2q)“2). 

(47) 
In Fig. 4 we present the values of Z* corresponding to 
equation (4) for v = 1, a = 0.4. These values of T* are 

almost the same as the improved lower bound given by 
equation (46). 

5. CONCLUDING REMARKS 

In this paper we develop lower and upper bounds 
for the solidification time and the energy extracted 
during freezing of slabs, and cylindrical and spherical 
shells with imposed heat flux at their outer surfaces. 
The inner surfaces of these bodies were assumed to be 
insulated, and the outfluxes of heat were taken to be 
constant or monotonically decreasing in time. 
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4 

, I 

Cl 1 2 3 

DIMENSIONLESS HEAT FLUX q 

FIG. 4. Solidification time of the cylindrical shell as a 
function of the flux (q = const, Bi = 0, v = 1, a = 0.4). Curve 
l-the upper bound in equation (45); curve 2-the 
approximate solution, equation (47); curve 3-the improved 
lower bound, equation (46); curve +-the lower bound in 

equation (45). 

The lower and upper bounds derived in the present 
work account for the initial overheating. By including 
the contributions of the sensible heat of the liquid and 
the solid, the lower bounds are substantially 
improved, as compared with the results of earlier 

studies. Our upper bounds account for the finite size of 
the systems considered and, therefore, are more 
accurate than those found in refs. [4, lo]. Due to these 
features the new bounds are sufficiently tight not only 
in the case of slow solidification, for which q < 1, but 
also for the q z 1 case. The accuracy of the bounds 
increases as q -+ 0. 

For a slab with a constant flux and no initial 
overheating the maximal error of the new bounding 
solutions for r* is about 7 times lower than of those 
given in refs. [4, lo]. The new bounds also validate the 
approximate solutions obtained for the same problem 
by the heat balance integral method [2] and by the 
Megerlin method [4] for the range of fluxes q 2 1, 
where the perturbation theory is invalid. We also 
examined the accuracy of the bounds for the case of a 
substantially overheated slab. The overheating was 

shown to increase the time of the solidification stage 
by about 22% for q = 1 and Qi 2 1. For inward 

solidification in a cylindrical shell the limits for r* 
derived in the present paper validate the approximate 
solution of ref. [S], which is slightly above our lower 
bound for T*. The method presented in this paper can 
be extended to the outward solidification in 
geometrically simple bodies, as well as to the melting 
of such bodies by a constant or monotonically 
increasing heat flux imposed at their surfaces. 
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SOLIDIFICATION DE CORPS FINIS AVEC UN FLUX THERMIQUE PRESCRIT: 
LIMITES POUR LE TEMPS DE GEL ET POUR L’ENERGIE EXTRAITE 

R&nne--On considere la solidification monodimensionnelle, control&e par la conduction, de plaques, de 
coques cylindriques ou sphtriques initialement surchauffees. Le flux de chaleur enleve sur la face externe 
est choisi constant ou monotoniquement d&croissant dans le temps. On obtient des limites suffisamment 
simples, superieures et inferieures pour le temps total de solidification et pour l’energie extraite. Ces limites 

sont comparees avec quelques solutions approchees connues et dont la precision est connue. 
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ERSTARRUNG IN ENDLICHEN KGRPERN MIT AUFGEPRilGTER 
WARMESTROMDICHTE : GEFRIERZEIT UND ABGEFUHRTE ENERGIE 

Zuaammeofassang-Es wurde die Erstarrung (im wesentlichen infolge eindimensionaler Wlrmeleitung) 
von anfanglich iiberhitzten Platten sowie zylinder- und kugelfiirmigen Schalen mit wlrmegedammten 
Innenwanden betrachtet. Die Wirmestromdichte an der BuBeren Oberfliiche wurde als zeitlich konstant 
oder monoton abnehmend angenommen. Es wurden hinreichend einfache und dicht beieinanderliegende 
obere und untere Grenzen filr die vollstandige Gefrierzeit und die entzogene Energie hergeleitet. Diese 
Grenzen wurden mit einigen bekannten N~he~ngsl6sungen verghchen, deren Genauigkeit dabei bestatigt 

werden konnte. 

IIPOHECC MTBEPAEBAHMII B TEnAX KOHE=IHbIX PA3MEPOB IIPH 3AAAHHOM 
TEl-UIOBOM I-IOTOKE: OIIPEAEJIEHHE IIPEAEJIbHbIX 3HAYEHklfi BPEMEHH 

3ATBEPAEBAHMJl I4 KOJ-IHYECTBA OTBEAEHHOI.0 TEIUIA 

Ammum-PaccMaTpmaeTcs 0nrioMepHaX 3aAaua 3amepneBamin 3a vieT 0moAa Tenna Temonpo- 
BOAtIOCTbZO OT IlepWpeTbIX 8 IiaKiJIbHbIk MOMeIiT B&EMt%iA l-lJlWTHH, a TtSXe IJHJNiHJ@&iWCKuX H C#.- 

p~wctzix o6onoqerc c Tenno5i3omiposamblrm ~HyqxmuiMa cremam. IQx2monarama, YTO 
TeMOBOfi nOTOK C HapyXCHOfi CTOpOHM ,SOBepXHoCTU He H3MeHReTCX UnU MOHOTOHHO YMeHbmaeTCX 80 

BpeMeHH. IIonyveHbI AoBonbiio npocrble n XohmaxTHbie BepxHsie n mimmie npenenbl AAR nonnoro 

BvMeHH 3aTBepAeBaHHSI H EOJEiWCTBa OTBeAeHHOTO TeEI% npOBeAeH0 C$JaBH~IiSK C HeKOTOpbIMH 


